Organization and regulation of cortical microtubuies during the first cell cycle of Xenopus eggs
نویسندگان
چکیده
Anti-tubulin antibodies and confocal immunofluorescence microscopy were used to examine the organization and regulation of cytoplasmic and cortical microtubuies during the first cell cycle of fertilized Xenopus eggs. Appearance of microtubuies in the egg cortex temporally coincided with the outgrowth of the sperm aster. Microtubuies of the sperm aster first reached the animal cortex at 0.25, (times normalized to first cleavage), forming a radially organized array of cortical microtubuies. A disordered network of microtubuies was apparent in the vegetal cortex as early as 0.35. Cortical microtubule networks of both animal and vegetal hemispheres were reorganized at times corresponding to the cortical rotation responsible for specification of the dorsal-ventral (D-V) axis. Optical sections suggest that the cortical microtubuies are continuous with the microtubuies of the sperm aster in fertilized s* o r a n extensive activation aster in activated eggs. Neither assembly and organization, nor disassembly of the cortical microtubuies coincided with MPF activation during mitosis. However, cycloheximide or 6-dimethylaminopurine, which arrest fertilized eggs at interphase, blocked cortical microtubule disassembly. Injection of pl3, a protein that specifically inhibits MPF activation, delayed or inhibited cortical microtubule breakdown. In contrast, eggs injected with cycA90, a truncated cyclin that arrests eggs in M-phase, showed normal microtubule disassembly. Finally, injection of partially purified MPF into cycloheximide-arrested eggs induced cortical microtubule breakdown. These results suggest that, despite a lack of temporal coincidence, breakdown of the cortical microtubuies is dependent on the activation of MPF.
منابع مشابه
Organization and regulation of cortical microtubules during the first cell cycle of Xenopus eggs.
Anti-tubulin antibodies and confocal immunofluorescence microscopy were used to examine the organization and regulation of cytoplasmic and cortical microtubules during the first cell cycle of fertilized Xenopus eggs. Appearance of microtubules in the egg cortex temporally coincided with the outgrowth of the sperm aster. Microtubules of the sperm aster first reached the animal cortex at 0.25, (t...
متن کاملO-10: A Marked Animal-Vegetal Polarity in The Localization of Na+,K+-ATPase Activity and Its Down-Regulation Following Progesterone-Induced Maturation
Background: Polarized cells are key to the process of differentiation. Xenopus oocyte is a polarized cell that has complete blue-print to differentiate 3 germ layers following fertilization, as key determinant molecules (Proteins and RNAs) are asymmetrically localized. The objective of this work was to localize Na+, K+-ATPase activity along animal-vegetal axis of polarized Xenopus oocyte and fo...
متن کاملThe S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane .
Abstract The S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane . Saeed Hajihashemi1 , 1-Assistant professor, PhD in Physiology, Department of Physiology, School of Medical science, Arak University of Medical Sciences. Introduction: ROMK channel is localized on the apical membrane of the nephron. Recent studies suggest that endocytosis of ROMK chan...
متن کاملIntracellular pH and intracellular free calcium responses to protein kinase C activators and inhibitors in Xenopus eggs.
Cell activation during fertilization of the egg of Xenopus laevis is accompanied by various metabolic changes, including a permanent increase in intracellular pH (pHi) and a transient increase in intracellular free calcium activity ([Ca2+]i). Recently, it has been proposed that protein kinase C (PKC) is an integral component of the Xenopus fertilization pathway (Bement and Capco, J. Cell Biol. ...
متن کاملO-8: Molecular Mechanisms of Membrane Fusion Involved in Fertilization
Background: Assisted fertilization procedures are a currently widespread practice to regulate reproduction in humans and animals. The arising question is why the human being manipulating gametes to generate new individuals, if we do not understand yet the molecular mechanism of fertilization?. Successful completion of fertilization in mammals is dependent on three membrane fusion events: 1. the...
متن کامل